

Follow-up of Stage I-III NSCLC: Who, When and How?

S. MOHAN¹, J. SHAFIQ², N. BEYDOUN³, E. NASSER⁴, A. NGUYEN¹ and S. VINOD⁵

¹University of New South Wales, Sydney, NSW, Australia, ²Ingham Institute, Liverpool, NSW, Australia, ³St George Hospital Cancer Care Centre, Kogarah, NSW, Australia, ⁴Illawarra Cancer Care Centre, Wollongong, NSW, Australia, ⁵Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW, Australia

BACKGROUND

- International Guidelines vary in their recommendations for follow-up (FU) after treatment for Non-Small Cell Lung Cancer (NSCLC)
- Australian⁵, ACCP⁶, ESMO⁷ and NCCN⁸: 6m for 2/3 y and yearly thereafter.
- ASCO², Canada³, and Chinese⁴ guidelines: 3m for 2y, 6m 2-5y, and yearly >5y.
- FU is important to manage treatment toxicities, diagnose events (recurrence or new primaries) and provide supportive management

PURPOSE

- 1. To compare patterns of post-radiotherapy FU care at 3 metropolitan Sydney Hospitals
- 2. To evaluate the role of routine imaging in FU
- 3. To estimate the proportion of patients suitable for curative interventions after diagnosis of recurrence or new primary lung cancer during FU

METHODS AND MATERIALS

- Retrospective data collection of Oncology and Hospital records at 3 Cancer Therapy Centers:
 - St George
 - Illawarra
 - Liverpool/Macarthur

Inclusion criteria

- Stage I-III NSCLC patients
- Completed curative dose of radiotherapy (min: 50Gy) +/- chemotherapy between 2007-2011

Not treated with surgery

Sample size = 283 patients

Data collection:

- Demographics: Age, Gender, ECOG, Alive/Dead status, Date of death, Cause of death
- Cancer Factors: Date of diagnosis, Stage, Histopathology, Treatment
- Follow-up: Date, Specialist, Symptoms, Imaging
- Recurrence/New Primary: Date of diagnosis, Method of diagnosis, Treatment, Intent

RESULTS

Table 1 – Characteristics of study patients % N Gender 183 64.7 Male Female 36.3 100 Age at diagnosis 36 12.7 <60 years 29.3 60-69 years 83 31.4 70-79 years 89 26.5 80+ years Histopathology 31.8 Large Cell Carcinoma 90 Squamous Cell 35.3 Carcinoma 100 69 24.4 Adenocarcinoma 8.8 **NSCLC NOS** 25

ECOG		
0	80	28.3
1	152	53.7
2	39	13.8
3	6	2.1
Unknown	6	2.1
Stage		
Stage I	79	29.7
Stage II	47	16.6
Stage III	105	53.7
Initial Treatment		
Radiotherapy	160	56.5
Sequential Chemoradiotherapy	18	6.4
Concurrent Chemoradiotherapy	105	37.1

REFERENCES

¹AIHW. Cancer in Australia 2017 Canberra: Australian Government. 2017.

²Pfister DG, et al. J Clin Oncol. 2004;22(2):330-53.

Author Contact: Sharanya Mohan

³Ung YC, et al. Follow-up and surveillance of curatively treated lung cancer patients. Ontario: Cancer Care Ontario. 2014. ⁴Zhi XY, Yu JM, Shi YK. Chinese guidelines on the diagnosis and treatment of primary lung cancer. Cancer. 2015;121(17):3165-81.

⁵Party TW. Clinical Practice Guidelines for the Prevention, Diagnosis and Management of Lung Cancer. NHMRC. 2004. ⁶Colt HG, et al. Follow-up and surveillance of the patient with lung cancer after curative-intent therapy: Diagnosis and management of lung cancer, 3rd ed: ACCP. Chest. 2013;143(5):437-54.

⁷Vansteenkiste J, et al. 2nd ESMO Consensus Conference on Lung Cancer: early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up. Ann Oncol. 2014;25(8):1462-74.

Email: z5016909@ad.unsw.edu.au

⁸Shead DA, et al. NCCN guidelines for patients. NCCN. 2016:59-84.

- Median no. of FU visits = 6(0-46) & Median period of FU = 10.8 months (0-104.2)
- 73.7% were routine, 26.3% were symptomatic visits

- 1641 imaging tests were performed = an average of 5.8 scans/patient
- 98 imaging studies resulted in the asymptomatic diagnosis of an event

Figure 2 – Types of imaging done at FU by hospital CXR Liverpool Illawarra **St George** ■ CT Chest ■ CT Abdomen CT Pelvis CT Brain 39% MRI Brain ■ Bone Scan PET Other

Figure 3 – No. of events (recurrence/new primary) by time for Stage I+II patients

■ Stage I+II - Recurrence ■ Stage I+II - New Primary **Time post-treatment (years)** 90% of Stage I&II recurrences occurred by 4.37 years

Figure 4 – No. of events (recurrence/new primary) by time for Stage III patients

diagnosis and subsequent treatment intent

- Symptomatic diagnosis of an event was associated with delivery of subsequent curative treatment (p=0.049) but was not significantly associated with overall survival (p=0.862)
- No other patient, tumor or initial treatment factors were significantly associated with subsequent curative treatment (p>0.05)

CONCLUSION

- FOLLOW-UP PRACTICE WAS VARIABLE ACROSS THE THREE INSTITUTIONS.
- THE MAJORITY OF EVENTS OCCURRED WITHIN 3 YEARS POST-RADIOTHERAPY
- THERE WAS A STEADY INCREASED RISK OF NEW PRIMARY CANCERS UP TO 9 YEARS AFTER **TREATMENT**
- ROUTINE IMAGING WAS NOT ASSOCIATED WITH IMPROVED SURVIVAL
- STANDARDISED ROUTINE FOLLOW-UP PROTOCOL MAY PREVENT SYMPTOMATIC **HOSPITAL PRESENTATIONS**